NSROC Engineering Topics

•NSROC Engineering Activities Krause

•ACS Transition Shendock

•Data Analysis Shendock

•WSMR Command Uplink Lankford

•WFF 93 Data (TM) Test Set Lankford

•GPS Activities Bull/Diehl

•Motor Buy Scott

NSROC Beginnings and Continuation

- NSROC's core group of engineers, technicians and support personnel has allowed a seamless transition from a government managed program to current program. The tradition of the the Sounding Rocket Program is maintained.
- NSROC has actively supported 18 missions since February 1, 1999.
 To date, there has not been a mission failure.
- NSROC is also responsible for many support groups including WFF Safety, CSOC, vendor subcontractors and external range interfaces.
- Continued open communication with the SRWG, SRPO and all PIs is vital in maintaining the program's viability.
- NSROC is open to SRWG input in overall process:
 - What makes sense to the program, makes sense to NSROC.

SRWG Meeting Comments, Summer 1999

- Sounding Rocket User's Manual
 - Updated version in 1999
 - Available online at NASA Wallops homepage
 - Pointer to updated User's Manual on nsroc.com homepage
- NSROC homepage now available
 - Challenge is for NSROC to compile and present proper requirements response and also allow an accurate bid to support the collection of science for PIs
 - NSROC Mission Questionnaire
 - Result is a better requirement response
 - Also a more proper cost proposal to SRPO and the PI
 - Questionnaire will be Online in Dec 99
- NSROC Environmental Testing document completed and online on nsroc.com

SRWG Meeting Comments, Summer 1999 (cont.)

- NSROC Review Process
 - Formal NSROC Review Panels established for all Design Reviews and Mission Readiness Reviews.
 - Continued oversight to maintain a consistant quality of the product and the processes employed.
- New System Procurements
 - Next Generation Motor Buy
 - Requirements established to allow similar or better performance for existing payload capabilities
 - More detail in follow during today's discussion
 - Gyro Procurement
 - Real need for procurement to support end-of-year 00 missions
 - Currently evaluating options available

NSROC Implementation of the DS-19

- NSROC Implemented the 1st flight for SAAB Ericsson DS-19 Impact Dispersion Control subsystem
- Mission occurred on September 27, 1999 at White Sands Missile Range
- DS-19 provides 45 seconds of active control and guides to an impact point (IIP)
- Dispersion about the aim point for the DS-19 1st mission was 0.48 km DR and 0.54 km CR (0.72 km total dispersion)
- The NSROC DS-19 Program included DS-19 training, direct SAAB interfacing, TM design changes and real-time launch support.

Figure 2-1 Terrier-Black Brant (Mod 2) 36 168 UG/Wilkinson Payload Configuration

SAAB Erickson DS-19 / S-19 Comparison

Terrier-Black Brant (Mod 2) 36.168 UG /Wilkinson 954.8 lb P/L, 87.0° QE, 340°AZ, WSMR, DS19

	<u>DS19</u>		<u>S19</u>
Predicted Apogee, km (sm)	330.3 (205.4)		330.3 (205.3)
Actual Apogee, km (sm)	329.0 (204.4)		
3-σ Theoretical Dispersion	2.0%	7.5%	7.67% DR
	1.2%	7.5%	6.84% CR
Desired impact km (sm)	77.25 (48) N		9.66 (6) W

	Down Range (km)	Cross Range (km)
Aim Point	77.85	0.00
Impact Point	77.36	0.54
Nominal Miss	-0.48 (-0.22σ)	0.54 (0.41σ)

36.168 Wilkinson Mission DS-19 Flight Data

36.168 Wilkinson Trajectory - Predict vs. Actual

